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Multivariate decoding 
of fMRI data
Towards a content-based 
cognitive neuroscience

Introduction

Within the last two decades, functional 
magnetic resonance imaging has become 
one of the most widely used tools in hu-
man cognitive neuroscience (for an over-
view of fMRI see e.g., [1]). FMRI measures 
the neural activity in a 3-dimensional grid 
of roughly 1–3 mm resolution. Most cog-
nitive neuroscience studies measure blood 
oxygen level dependent (BOLD) signals, 
which indirectly reflect processes in the 
underlying neural tissue [2]. One of the 
major features—but also challenges—of 
neuroimaging is that it yields very com-
plex, high-dimensional data sets includ-
ing up to several hundred thousand vox-
els. Traditionally, the data have been ana-
lyzed with a “mass univariate” general lin-
ear model approach [3] that assesses task-
related modulation for each voxel sepa-
rately. One limitation of this approach is 
that the high-dimensional fMRI data con-
tain substantial information in the pat-
terning and correlation between voxels. 
Such information is neglected by these 
more traditional mass univariate analyses.

In recent years, multivariate pattern 
analysis (MVPA) techniques (also referred 
to as multivariate decoding, . Fig. 1) have 
been introduced to the field of fMRI [4, 5, 
6] (for recent overviews over several mul-
tivariate techniques and their applications 
see e.g., [6, 7, 8, 9]). Multiple classification 
algorithms are put to use, spanning from 
k-nearest neighbor classifiers, Gaussian 
naïve Bayes classifiers, linear discrimi-
nant analysis, linear and non-linear sup-
port vector classification and regression 
to ridge regression (for discussion of dif-
ferent classifiers see e.g., [9]). These tech-
niques use part of the data to train a clas-
sifier to predict which out of several spe-
cific cognitive states a subject is in (e.g., 
whether she/he was preparing to do a 
left or right hand movement). The clas-
sifier is then tested on a remaining, inde-
pendent test data set, to see how accurate-
ly it can classify this data. This results in 
a measure of classification accuracy that 
can be used to tell how well the classifi-
er can predict a cognitive state from hu-
man brain activity (. Fig. 1 ). Classifiers 
can be applied to whole brain data or can 

be used to make predictions from a subset 
of voxels such as a region of interest (ROI). 
An unbiased way to map over the entire 
brain the information contained in local 
patterns of brain activity is the so called 
searchlight technique [10, 11]: A small re-
gion is defined around every single voxel 
in the brain, and then classification is per-
formed using the multivariate data with-
in this small region. Finally, every vox-
el gets assigned the classification perfor-
mance of its local surround which results 
in a map of decoding information across 
the entire brain.

This review contains a selective sum-
mary of cognitive neuroscience studies 
that use fMRI and MVPA that have been 
performed in the past few years by our re-
search group. In a first part, several stud-
ies are presented for applications of classi-
fication techniques in cognitive neurosci-
ence. These studies use MVPA techniques 
to address questions of content in brain ac-
tivity, such as for example which specif-
ic visual stimulus a person was visually 
imagining. In the second part, a series of 
methodological developments are shown 
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that go beyond simple classification and 
extend current methods. In particular, we 
will illustrate how multivariate decoding 
can be used to study information flow be-
tween regions and even between brains, 

how 3D-searchlight decoding methods 
can be constrained to the cortical surface 
(2D) to more accurately capture the cor-
tical anatomy, and how classifiers can be 
used for medical diagnostics. The studies 

summarized in this review have all been 
conducted within the same research lab-
oratory and thus do not have the aim to 
provide an extensive overview over MV-
PA approaches in fMRI. Rather they con-
stitute a biased selection of topics in which 
MVPA have been shown to provide im-
portant insights into cognitive neurosci-
ence questions, often giving answers that 
could not have been obtained with stan-
dard techniques.

Decoding cognitive content 
from multivariate fMRI data

Visual imagery and perception 
share substrates in the brain

One important application of classifiers 
is to study the coding of perceptual con-
tent in visual brain regions. Whereas tra-
ditional fMRI approaches have focused on 
overall activity in visual brain regions and 
on retinotopy, multivariate pattern anal-
ysis allows us to study how specific visu-
al stimuli are encoded in detailed activity 
patterns of the visual brain. In one study 
[12], we investigated the cortical encod-
ing of object categories in object-selective 
cortical regions. Importantly, we also as-
sessed to which degree the codes for spe-
cific objects are similar for imagined vi-
sual stimuli (“imagery”) as opposed to 
physically presented images (“veridical 
perception”). The ability to conjure up 
images of the world in the “mind’s eye” 
is a hallmark of human cognition and al-
lows for the potentially infinite flexibili-
ty in thinking [13]. The experience of im-
agery is similar to the experience of ve-
ridical seeing: It can be described by the 
content, i.e. “what” one sees, and the lo-
cation, i.e. “where” one sees it in the vi-
sual field. This suggests that imagery and 
perception might share common sub-
strates in the brain. We tested this hy-
pothesis in an fMRI experiment [12]. For 
this, we first identified regions of the vi-
sual brain that respond preferentially, but 
not exclusively to the perception of specif-
ic categories: scenes, body parts, and fac-
es. These are called category-selective re-
gions. Then, subjects either saw images of 
the aforementioned categories presented 
either left or right of fixation, or they were 
cued auditorily to visually imagine a pic-
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Fig. 1 8 Multivariate decoding of fMRI signals. fMRI measures brain activity in a three-dimension-
al grid of voxels. For simplicity only two dimensions are illustrated here. a Pattern (feature) vectors for 
multivariate analysis can be extracted from the whole brain, regions of interest (ROI) or using a search-
light. b Repeated measurements of two task conditions (e.g., left vs. right hand movement) are split 
into a training and test data set. A classifier is first trained (1. Train) on the training data. Then, the clas-
sifier is used to predict (2. Test) the label (task condition) of the independent test data pattern vec-
tors. The different dimensions of the vector can be considered as axes of an N-dimensional coordi-
nate system where N is the number of voxels. c, d, e Illustration of a classifier in a two-dimension-
al space (adapted from [5]). The marginal distributions are plotted on the corresponding axes. c In the 
easiest case, it is possible to separate the repeated measurements of both stimulus classes (circles and 
squares) on either of the two axes. The marginal distributions do not overlap. d In this case, the mar-
ginal distributions are largely overlapping precluding classification based on the activity of one vox-
el alone. However, by taking into account the activity in both voxels it is possible to fully separate the 
multivariate responses to both stimuli using a linear decision boundary. After learning the decision 
boundary on a training data set, a new measurement can be made that can be used to test the abili-
ty of the classifier to correctly predict the label of an independent measurement. If the multivariate re-
sponse falls on the correct side of the decision boundary this will result in a hit (“correct”), if it falls on 
the wrong side this will result in a miss (“error”). e In some cases, a linear decision boundary is not suf-
ficient, and a non-linear decision boundary is required
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ture in the same locations (. Fig . 2a, b). 
We then extracted the activation patterns 
evoked during imagery and veridical per-
ception in order to test whether patterns 
were similar for specific contents and lo-
cations using multi-voxel pattern classifi-
cation (. Fig. 2c). Indeed, imagery and 
perception shared a common substrate for 
the preferred category in all category se-
lective regions. Interestingly, in most cat-
egory-selective regions we were also able 
to decode the non-preferred categories, 
suggesting that information is not strict-
ly localized within individual processing 
modules, but instead is broadly distribut-
ed across visual areas. Next, we investigat-
ed whether imagery and perception share 
a common substrate of location in the vi-
sual/imaginary field by training a classifi-
er on imagery and testing it on veridical 
perception (. Fig. 2d). Imagery classifi-
ers could be used to predict veridical per-
ception in medial, but not lateral category-
selective regions, suggesting that imagery 
and perception share a common substrate 
only in the medial visual brain.

Perceptual learning in 
prefrontal cortex

An important question for the encoding 
of visual contents in the brain is whether 
the representations exhibit stability across 
time, even though human perception ex-
hibits substantial plasticity and learning. 
For decades the dominant view in visu-
al perceptual learning was that behavioral 
improvements during perceptual learning 
are accompanied by changes in early visu-
al representations. Thus, one might expect 
that the neural code for visual contents 
changes across learning as well. Howev-
er, this view was mainly based on psycho-
physical data [14] and received only in-
consistent support form neural recording 
studies (for an overview see [15]). In con-
trast, more recent work suggests that per-
ceptual performance improvements might 
rather be related to changes in higher de-
cision-making areas beyond sensory cor-
tex [16]. Similarly, reward-related learn-
ing in general is accompanied by activi-
ty changes in decision-making areas such 
as the anterior cingulate cortex (ACC). In 
principle, areas that update and represent 
action values in reward-based tasks could 

also integrate sensory information in the 
context of perceptual decision making. In 
a study [15], we used a model-based neu-
roimaging approach in combination with 
multivariate decoding to test the idea that 
visual perceptual learning can be account-
ed for by reinforcement learning involv-
ing changes in higher decision-making 
areas. We trained 20 subjects on an ori-
entation-discrimination task with explic-
it performance feedback over the course 
of four days (. Fig. 3a, b). Behavioral im-
provements in perceptual choices (. Fig. 
3c) were well explained by a reinforce-
ment learning model for perceptual deci-
sion making (. Fig. 3d). Learning in this 
model is accompanied by an enhanced 
read-out of sensory information, there-
by establishing noise-robust representa-
tions of decision variables that form the 
basis for perceptual choices (. Fig. 3e). 
To identify activity patterns that encode 
information about stimulus orientation 
(x) and model-derived decision variables 
(DV), we used information mapping tech-
niques (searchlight decoding in combina-
tion with multivariate support vector re-
gression models). We found sensory evi-
dence (orientation) encoded in early visu-
al cortex (. Fig. 3f, left) by idiosyncratic 
activity patterns (. Fig. 3f, middle). How-
ever, these representations did not change 
with training (. Fig. 3f, right). Only ac-
tivity patterns in the ACC tracked learn-
ing-related changes in the model-derived 
decision variables. Importantly, distribut-
ed activity patterns in the ACC contained 
significantly more information about 
the model-derived decision values (that 
changed with learning) than the mere 
stimulus orientation (. Fig. 3g). These 
results provide strong evidence for per-
ceptual learning related changes in high-
er cortical regions and show that percep-
tual learning can be accounted for by a 
reinforcement process. This means that 
perceptual and reward-based learning are 
likely to be based on a common neurobi-
ological mechanism. Furthermore, our re-
sults show that the neural code for visual 
contents does not change across perceptu-
al learning in adults, thus the representa-
tions exhibit temporal stability. 

Abstract

Bottom-up saliency in 
natural scenes

When an object is different than its sur-
round it is said to visually “pop out”. Such 
salient stimuli automatically capture our 
attention, an effect that is believed to be 
driven by sensory stimulus features in a 
“bottom-up” fashion. This could be a fast 
moving object that pops out from oth-
er, stationary objects, or a colorful object 
surrounded by gray ones. Computation-
al models [17] typically assume that the 
saliency is represented as a map that en-
codes how salient the visual input at each 
position in the visual field is. After such a 
graded saliency map is calculated, a win-
ner-take-all (WTA) mechanism can then 
be used to select the most salient (i.e. “in-
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Abstract

The advent of functional magnetic resonance 
imaging (fMRI) of brain function 20 years ago 
has provided a new methodology for non-in-
vasive measurement of brain function that 
is now widely used in cognitive neurosci-
ence. Traditionally, fMRI data has been an-
alyzed looking for overall activity chang-
es in brain regions in response to a stimu-
lus or a cognitive task. Now, recent develop-
ments have introduced more elaborate, con-
tent-based analysis techniques. When mul-
tivariate decoding is applied to the detailed 
patterning of regionally-specific fMRI signals, 
it can be used to assess the amount of infor-
mation these encode about specific task-vari-
ables. Here we provide an overview of sev-
eral developments, spanning from applica-
tions in cognitive neuroscience (perception, 
attention, reward, decision making, emotion-
al communication) to methodology (informa-
tion flow, surface-based searchlight decod-
ing) and medical diagnostics.

Keywords
Functional neuroimaging · Multivariate 
decoding · Information flow · Perceptual 
learning · Decision making
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teresting”) position to which covert or 
overt attention is subsequently guided. 
In one study [18], we were interested in 
whether graded saliency and WTA-thres-
holded saliency representations could be 

separately identified in the human brain. 
Subjects viewed 100 different black and 
white photographs in a rapid event-relat-
ed fMRI paradigm. Because we were in-
terested in the bottom-up properties of 

the stimuli and not the ensuing attention 
shifts themselves we ensured that subjects’ 
attention was diverted away from the pic-
tures using a demanding fixation task at 
the center of the screen. For each of the 

Fig. 2 8 Investigating shared substrates of imagery and perception in the human brain with fMRI. a Participants veridical-
ly perceived or imagined specific exemplars of scenes, body parts or faces. b Perception of the aforementioned categories 
preferentially activates focal regions in the visual brain: the parahippocampal place area (PPA) and transverse occipital sulcus 
(TOS) for scenes, the fusiform body area (FBA) and extrastriate body area (EBA) for body parts, and the fusiform face area (FFA) 
and occipital face area (OFA) for faces. Our experimental question was whether imagery of the same categories would acti-
vate these regions in a manner similar as perception for both content (“what is seen”) and location (“where in the visual field 
something is seen”). For this, subjects either saw or imagined the images shown in a. c A support vector machine was trained 
to distinguish between brain activation patterns evoked during imagery of different categories, and tested on brain patterns 
evoked during perception. All category selective regions contained above-chance information about their preferred catego-
ry, and most also about their non-preferred categories. d A support vector machine was trained to distinguish between loca-
tions during imagery and tested the classifier on locations of veridically perceived images. The results indicate that imagery 
and perception share a common substrate in medial, but not lateral category-selective regions. Figure adapted from [12]
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100 images we calculated the spatial sa-
liency map using the SaliencyToolbox for 
Matlab [19]. We then averaged the salien-
cy values individually for each of the four 
quadrants, excluding the center to which 
attention was directed. This gave us grad-
ed saliency values individually for the four 
quadrants of each image (. Fig. 4c). Ac-
cording to a computational model [17], 
the graded saliency would then be thres-
holded by a WTA process, marking the 
quadrant with the highest saliency value 
as the most salient position (WTA salien-
cy). Using a parametric univariate analy-
sis for the fMRI data the graded saliency 
representation was found to be encoded 
in visual cortex and posterior intraparietal 
sulcus (pIPS). A subsequent multivariate 
pattern classification additionally revealed 
that WTA-thresholded saliency was en-
coded in distinct regions in anterior in-
traparietal s ulcus (aIPS) and the frontal 

eye fields (FEF) (. Fig. 4g). In conclu-
sion, bottom-up attentional signals from 
the unattended surround appear to be 
processed automatically and reach higher 
visual areas such as aIPS and FEF. These 
latter areas could then be involved in initi-
ating potential shifts of attention.

Non-topographic representations 
of visual spatial attention 
in prefrontal cortex

Attention is not just directed by salient, at-
tention-grabbing features in our environ-
ment. Instead, humans have the ability to 
voluntarily direct their attention to spatial-
ly defined targets in the visual field. Sev-
eral cortical regions are known to spatial-
ly represent the visual field in topograph-
ic maps and could thus be candidates for 
top-down attentional control signals. Im-
portantly, these topographic represen-

tations become less pronounced when 
moving from early visual areas toward 
extra-occipital areas. We employed mul-
tivariate pattern analysis to identify cor-
tical representations of the currently at-
tended position in the visual field. Impor-
tantly, using a decoding approach we did 
not have to rely on the assumption that 
attention would be encoded in a spatial 
map. Instead, we would be able to iden-
tify even spatially anisotropic distribu-
tions of cells that code for specific attend-
ed subregions of the visual field. In an fM-
RI study [20], participants shifted their vi-
suospatial attention toward cued targets 
(. Fig. 5a). By applying a searchlight-
technique on the cortical surface ([10], 
. Fig. 5b, . Fig. 13) we identified topo-
graphically organized representations in 
the occipital and posterior parietal cor-
tices which are in line with previous “at-
tention-o-topic” mapping studies. Impor-
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Fig. 3 8 Perceptual learning in the prefrontal cortex (PFC). a Orientation discrimination task. b Subjects had to indicate 
whether a presented orientation is tilted clockwise or counter-clockwise from 45°. c Performance improved over the four 
training days. d A reinforcement learning model for perceptual decision making was designed to account for subjects’ behav-
ioral improvements. e Model derived subjective evidence (DV, gray line) increased over training, whereas stimulus orientation 
(x, black line) remained in the same range. f Objective stimulus orientation was encoded in the left lower visual cortex (left), by 
distributed patterns of activity (middle). However, information about stimulus orientation did not change across learning. g A 
region in the medial PFC contained significantly more information about the model-derived subjective evidence than the ob-
jective stimulus orientation. Figure adapted from [15]
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tantly, additional information on the cur-
rent position of visuospatial attention was 
also found in non-topographically orga-
nized areas in the human prefrontal cor-
tex, including the right middle frontal gy-
rus and the right ventrolateral prefrontal 
cortex (. Fig. 5c). This shows that beyond 
topographically organized areas, informa-
tion on visuospatial attention is represent-
ed in spatial but non-topographic neuro-
nal activity patterns in the human fron-
tal cortex.

Decoding perceptual decisions 
and perceptual guessing

In bright daylight, we can normally iden-
tify objects in our environment effortless-
ly. There is sufficient sensory informa-
tion for us to make perceptual judgments. 
However, under difficult viewing condi-
tions (darkness, fog) information is re-
duced such that stimuli can be difficult to 
see. We might even have the impression to 
be purely guessing. This raises two impor-
tant questions: (1) What happens to neu-
ral object representations under low visi-
bility? Are the sensory representations of 
objects disrupted, or are other processes 
responsible for our inability to see stim-
uli under difficult viewing conditions 
(e.g., say signals in prefrontal cortex, see 
above)? (2) Which signals are used to de-

termine our choices, and how do these 
signals differ under high and low visibili-
ty? For example, even under low visibility 
our choices might still be based on a read-
out of noisy sensory signals. Alternatively, 
a dedicated guessing system could deter-
mine the choices under low visibility, in-
volving a different brain network. We ad-
dressed this question by using a multivar-
iate pattern searchlight classification and 
tested which brain regions were predictive 
for stimuli and choice outcomes under 
different visibility conditions [21]. In this 
fMRI study, participants made perceptu-
al choices for images from three catego-
ries: pianos, chairs and non-object noise 
images  (. Fig. 6b). On each trial partic-
ipants were presented with brief, repeat-
ed mask–target–mask sequences, which 
either did not strongly affect image vis-
ibility (high visibility condition) or ren-
dered the images close to invisible (low 
visibility condition) (. Fig. 6a). A clas-
sifier was then trained on activation pat-
terns from all brain regions for each visi-
bility condition separately to predict stim-
uli and choice outcomes from activation 
patterns from independent data. First, we 
found that object-related information in 
object-sensitive brain region lateral oc-
cipital complex (LOC) was absent for in-
visible stimuli. Second, we were interest-
ed in decoding the choices from brain ac-

tivity. Patterns of brain signals from LOC 
predicted choices only under high visibil-
ity (green regions, . Fig. 6c). This most 
likely reflected the successful use of visual 
information for decision making. Choic-
es under low visibility, when participants 
reported to be guessing, however, could 
not be predicted from sensory regions. 
Instead, a region in medial posterior pa-
rietal cortex, mainly located in the precu-
neus, became predictive for choices under 
low visibility (red regions, . Fig. 6c). Tak-
en together, our study revealed a double-
dissociation of predictive regions for per-
ceptual decisions under high and low vis-
ibility. Interestingly, the medial posterior 
parietal region, which was predictive for 
perceptual guessing, highly overlapped 
with a region that we recently found to be 
involved in free decision making [22] (see 
next section) and that has been discussed 
to be involved in a variety of self-related 
higher cognitive functions [23]. We con-
cluded that this region might be related to 
a mechanism for ‘internal’ decision mak-
ing, when external input falls short on 
providing sufficient information to over-
come a decision conflict.
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holded by a winner-take-all (WTA) process which marked only the most salient quadrant. g Results: Graded saliency correlat-
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cal spatial activation patterns in anterior IPS and FEF (blue) (results are thresholded at p < 0.05, FWE corrected). aIPS anterior 
intraparietal sulcus, pIPS posterior intraparietal sulcus, FEF frontal eye fields. Figure adapted from [18]
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Decoding free decisions from 
human brain activity

Decision making does not always involve 
making judgements about sensory stim-
uli. As human beings, we are constant-
ly making conscious decisions between 
different choices, sensory and non-sen-
sory. For example, we take for granted 
that our voluntary actions are the result 

of conscious decisions for specific inten-
tions. However, this subjective impres-
sion is increasingly challenged by recent 
findings suggesting that our free deci-
sions to act may not be totally governed 
by the conscious mind, but may be initi-
ated by unconscious mental processes be-
fore conscious decisions are made. Using 
fMRI and multivariate analysis we showed 
that specific motor decisions could be de-

coded from unconscious brain activi-
ty even up to a few seconds before sub-
jects were consciously aware of their de-
cisions [22]. Subjects freely and sponta-
neously decided to make either a left or 
right button press and subsequently re-
ported via a letter-stream clock the time 
when they first made the conscious mo-
tor decision (. Fig. 7a). MVPA tech-
niques revealed that, a few seconds before 

Fig. 5 8 Spatial but non-topographic representation of visual attention in human frontal cortex. a Participants covertly shift-
ed visual attention toward cued locations in the visual field. b fMRI-BOLD activity patterns of localized “searchlights” on the 
cortical surface were screened for the content of information on the current location of visuospatial attention. c A wide-
spread network of cortical areas contains information on the current location of visual attention. The representation is global-
ly changing from a topographic encoding in occipitoparietal to a non-topographic encoding in prefrontal areas. Figure adapt-
ed from [20] and [10]
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the decision was consciously made, high-
level control regions including lateral and 
medial frontopolar cortex, and precune-

us/posterior cingulate, already began to 
encode the content of the upcoming de-
cision in their local spatial patterns of ac-

tivity, despite showing no overall increase 
in fMRI signal (. Fig. 7b). Once the de-
cision reached conscious awareness, re-

Fig. 6 8 Experimental paradigm and results from perceptual decision experiment. a In the scanner, brief, flashed mask–im-
age–mask sequences were presented to 14 participants, rendering target images either visible or close to invisible. The as-
sociations between response buttons (operated with fingers of the right hand) and categories were pseudo-randomized on 
a trial-by-trial basis in order to de-correlate category choices and motor responses. b Images from three categories (pianos, 
chairs, noise; one example image is displayed) were presented in the scanner, half in each visibility condition. c Whole-brain 
searchlight decoding results for category choices. Choices under high visibility could only be decoded from bilateral LOC 
(green). Perceptual guesses under low visibility could only be decoded from precuneus (red). Chance level was 33% for three 
categories. For better visualization, results are displayed with p  < 0.0001 uncorrected. Example of one individual spatial acti-
vation pattern is shown with voxels responding preferentially to one category being color-coded and scaled for illustration. 
Figure adapted from [21]
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gions that were involved in executing the 
voluntary motor action including the pre-
SMA, SMA and bilateral primary motor 
cortices began to encode the content of 
the motor decision. In contrast, the tim-
ing of the decision could be decoded from 
the pre-SMA and SMA a few seconds be-
fore reaching awareness, but not from the 
frontopolar and precuneus/posterior cin-
gulate regions. Thus, there appears to be a 
double dissociation in the very early stag-
es of motor intention formation, between 
brain regions shaping the specific decision 
outcome and those determining the tim-
ing of the decision. In the light of these 
and other related findings, the causal rela-
tionship between conscious will and brain 
processes might need to be re-examined.

The compositionality of rule 
representation in prefrontal cortex

In most of our actions, we are not free 
to choose between different options. In-
stead, the tasks we perform require us to 
follow specific rules for successful behav-

ior. Rules are widely used in everyday life 
to organize actions and thoughts in accor-
dance with our internal goals. One of the 
questions we were interested in was how 
specific rules are encoded in brain activ-
ity. At the simplest level, single rules can 
be used to link individual sensory stim-
uli (e.g., seeing a green pedestrian light) 
to their appropriate responses (cross the 
road). However, most complex tasks re-
quire the combination of multiple rules, to 
form compound rule sets (walk on green, 
stop on red). It is known that frontal and 
parietal cortices are involved in rule rep-
resentation. However, a fundamental issue 
still needs to be clarified: Is the neural rep-
resentation of compound rules composi-
tional, i.e. built on the neural representa-
tion of their constituent rules (. Fig. 8a)? 
In one experiment [24], we asked sub-
jects to remember and apply either single 
or compound rules (. Fig. 8b, c). Multi-
variate searchlight decoding was applied 
to fMRI data collected in the phase be-
tween cue presentation and target onset 
(. Fig. 8b). We found that information 

on the visual features of the cues was en-
coded in the occipital and lateral parietal 
cortices, while information on the active 
compound rules was stored in lateral pa-
rietal and ventro-lateral prefrontal cor-
tex (. Fig. 8d). Furthermore, in ventro-
lateral prefrontal cortex, it was possible 
to decode the compound rules by train-
ing classifiers only on the single rules they 
were composed of. These findings suggest 
that the lateral parietal cortex is involved 
in translating the cues into their mean-
ing. Only the latter information is then 
made available to the infero-lateral fron-
tal cortex, which maintains it during the 
delay. Furthermore, and most important-
ly, these findings show for the first time 
that the code used to temporarily store 
rule information in the lateral prefrontal 
cortex is compositional. Compositionali-
ty of the code helps explain the flexibility 
of human behaviour, because it  allows us 
to build together more and more complex 
behaviour patterns from simple constitu-
ent building blocks.
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Fig. 7 8 Decoding motor intentions before they reach conscious awareness. a Measuring the onset time of conscious motor 
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motor intention. b Brain areas where the specific outcome of the motor decision could be decoded before reaching conscious 
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the onset of the next trial. Figure adapted from [22]
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Decoding reward value

Objects in our environment are not just 
defined by their physical stimulus char-
acteristics, but also by the reward we ex-
pect to obtain from them. Previous elec-
trophysiological work in non-human pri-
mates has suggested that reward value is 
encoded by different populations of posi-
tive and negative value-coding neurons in 
the orbitofrontal cortex (OFC) (see e.g., 
[25]). A neural coding of reward value 
should fulfill two criteria. First, the neu-
ral representation should generalize across 
different sensory cues predicting the same 
reward. That is, a given reward value 
should be represented by the same neural 
code when predicted by different senso-
ry stimuli. Second, according to reinforce-

ment learning theory [26], value should be 
represented by the same neural code inde-
pendently of whether a certain reward val-
ue is expected or actually received. To ex-
amine whether the neural response pat-
terns in the human OFC fulfill these cri-
teria, we designed an experiment in which 
different sensory cues predicted different 
amounts of reward (. Fig. 9a, [27]). Sub-
jects were trained to associate the sensory 
cues and the rewards prior to fMRI acqui-
sition. Using cues defined by two feature 
dimensions (color, rotation direction) al-
lowed us to dissociate reward representa-
tions from representations of the individ-
ual sensory feature dimensions. For each 
subject, only specific conjunctions of col-
or and rotation were predictive of a cer-
tain reward value, whereas the individual 

sensory features were not correlated with 
the reward value (. Fig. 9b). We then de-
coded high vs. low value cues indepen-
dent of the sensory features of the cues, by 
training and testing a linear support vec-
tor classifier (SVC) on sensory cues with 
the same expected value but orthogonal 
sensory properties. This analysis revealed 
a network of regions including the medial 
OFC where activity patterns that encode 
high vs. low expected values are indepen-
dent of the sensory features.

Furthermore, by training and test-
ing the classifier on data from the antic-
ipation and reward receipt phase, respec-
tively, we identified a region in the me-
dial OFC where neural coding of reward 
value is independent of whether the re-
ward is anticipated or actually received 

Fig. 8 8 Compositionality of rule representation. a Alternative ways of coding complex rules. Middle Examples of activity pat-
terns coding for two single rules: Rule X and Rule Y. Two alternative coding possibilities for the compound rule formed by Rule 
X and Rule Y are illustrated. The first possibility (left) is to use a compositional code so that the pattern coding for the Rule XY 
would be the combination of the patterns for Rule X and Rule Y alone. An alternative possibility (right) is to use an indepen-
dent code so that the pattern for Rule XY would be unrelated to the patterns for Rule X and Rule Y. b Timeline of a single trial 
of the experimental paradigm. At the beginning of each trial, the cue informed the subjects which rule had to be followed. Af-
ter a delay, the target image was presented. Subjects had to apply the active rules to the target stimuli and derive the correct 
response as fast as possible. c Rules used in the experiment. Four single rules (left side, S1–S4) and two compound rules (C1–
C2) were used. Compound rules are formed by two single rules, e.g., C1 = S1 + S2. d Regions where it was possible to decode 
from local patterns of activation which cue was presented (top) and which compound rule was active in a specific trial (mid-
dle). Bottom Compositionality analysis: Regions in which it was possible to decode which compound rule was active by only 
relying on information extracted from the local patterns of activation associated with single rules. Figure adapted from [24]
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(. Fig. 9c). Inspection of the support vec-
tor weights suggested that highly idiosyn-
cratic and detailed patterns of increasing 
and decreasing activity are associated with 
increasing reward value. This patterning 
is in line with a population coding model 
of expected value where positive and neg-
ative value-coding neurons are random-
ly distributed in the OFC, as suggested by 
single-unit recordings in monkeys [25]. 
The patterns coding for value during an-
ticipation and receipt of reward were sim-
ilar within each subject, suggesting an id-
iosyncratic neural code for value (. Fig. 
9d). Moreover, across subjects, the degree 
of this similarity was correlated with ex-
plicit and implicit measures of how well 
subjects had learned the association be-
tween the sensory cues and the reward 
value (. Fig. 9e). This suggests that re-
ward learning involves the emergence of 
neural response patterns during anticipa-
tion that code specific reward outcomes. 
In a follow-up experiment, we directly 
tested this idea and showed that patterns 

during reward anticipation and reward re-
ceipt become similar during the acquisi-
tion of reward predictions [28].

Neural encoding of future 
consumer choices for attended 
and unattended products

An important question is how the reward-
ing nature of objects guides our behavioral 
choices, as when we act upon preferences 
to different consumer objects. When sub-
jects actively evaluate products and explic-
itly deliberate about purchasing, neural 
activation has previously been shown to 
reflect immediately following purchase de-
cisions [29]. In one study [30], we aimed 
to demonstrate that brain responses pre-
dict subsequent purchase decisions even 
when attention is diverted from products 
and when consumer choices are currently 
not under consideration. To address these 
issues, two independent groups of subjects 
were presented with pictures of real cars 
while their brain activation was measured 

using fMRI. Subjects in the ‘high attention’ 
group were instructed to actively evaluate 
each car on a four-point scale and to re-
port their judgments after the picture of 
the car was removed (. Fig. 10a). Subjects 
in the ‘low attention’ group, on the other 
hand, were engaged in a demanding visu-
al fixation task that was unrelated to the 
images of cars simultaneously presented 
in the background (Fig. 10b). Thus, prod-
ucts were either task-relevant and close-
ly attended to (high attention condition) 
or task-irrelevant and presented outside 
the focus of attention (low attention con-
dition). After scanning, subjects of both 
groups had to state their willingness to 
buy each of these cars or not (. Fig. 10c). 
Notably, during scanning, subjects in both 
experimental groups were not aware that 
they were going to be asked to make pur-
chase decisions later on. A searchlight de-
coding approach was then applied to in-
vestigate whether activation patterns ob-
tained during product exposure predict-
ed these individual consumer choices. We 
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Fig. 9 8 Neural coding of expected reward value. a Simple reward providing decision-making task. b XOR association be-
tween sensory cues (color, rotation direction) and reward magnitude. c In the medial OFC neural coding of reward value is in-
dependent of whether the reward is anticipated or actually received. d Example of idiosyncratic value-coding response pat-
terns during anticipation (left) and reward receipt (right). Activity in yellow areas increases with increasing value (positive val-
ue-coding) and activity in blue areas decreases with increasing value (negative value-coding). Both patterns are significant-
ly correlated across space within-subject (middle). e The similarity of the value-coding response patterns during expectation 
and receipt is significantly related to explicit (top subjective association) as well as implicit measures of reward learning (bot-
tom performance modulation). Figure adapted from [27]
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found that activation patterns in the me-
dial prefrontal cortex (mPFC) and the in-
sula reliable predicted subsequent con-
sumer choices in the ‘high attention’ and 
the ‘low attention’ group (. Fig. 10d). 
Moreover, the predictive information (i.e. 
decoding accuracy) in these brain regions 
was comparable for conditions of high 
and low attention processing. These find-
ings indicate that the brain automatically 
processes consumer products when pur-
chase decisions are currently not under 
consideration and allows for neural pre-
dictions of economic decisions. Striking-
ly, our results indicate that such a predic-
tion of consumer choices based on func-
tional brain responses does not depend on 
attentional processing of consumer items.

Multivariate analyses 
of information flow and 
advances in decoding

As outlined in the previous sections, mul-
tivariate decoding provides a highly use-

ful tool to study the encoding of high-
ly specific sensory and cognitive repre-
sentations. In the following section we 
will present work that allowed us to ad-
vance the methodological aspects of this 
research field.

Cortico-cortical receptive fields 
between topographically 
organized brain regions

The processing of information in the 
brain relies on the interaction between 
different cortical regions. Although fMRI 
measurements provide us with the spa-
tial resolution to look at the fine-grained 
structure within cortical regions (e.g., the 
topographic organization of visual ar-
eas), to date, interactions between differ-
ent brain regions in humans have mostly 
been studied by considering the average 
regional activity and thereby neglecting 
the fine-grained structure of brain activi-
ty. Standard functional connectivity mea-
sures can be extended substantially by in-

vestigating how precisely the activity of 
individual voxels in one region depends 
on the pattern of activity in a different re-
gion. We used a multivariate support vec-
tor regression (. Fig. 11a) to predict activ-
ity of voxels in visual area V3 from the ac-
tivity in area V1 [31]. This approach results 
in two interesting measures: First, the pre-
diction accuracies allow us to assess the 
amount of information that one brain area 
provides about activity in a remote part of 
the brain. Second, the distribution of the 
weights is a measure of the spatial pattern 
within that brain region (V1) that best pre-
dicts activity in the other (V3). In the vi-
sual cortex, this is equivalent to studying 
cortico-cortical receptive fields (CCRF), i.e. 
estimating which parts of one visual area 
contribute most to the activity of individ-
ual voxels in a different area. As expected, 
the average CCRF between V1 and V3 was 
clearly in line with the underlying visuo-
topic anatomical connectivity [32] when 
subjects were viewing a visual stimula-
tion (. Fig. 11b, left). Interestingly, even 

Fig. 10 8 Decoding of subsequent consumer choices from spatial activation patterns in the brain. Using fMRI, we measured 
brain responses for two independent groups of subjects that were presented with single pictures of cars. a Subjects in the 
‘high attention’ group evaluated each car and reported their judgment via a button press. Thus, subjects in this group closely 
attended to products. b Subjects in the ‘low attention’ group performed a visual attention task (i.e., button presses to the left- 
or right-side opening of a fixation square) that was unrelated to the pictures of cars and diverted attention from these prod-
ucts. c Outside the scanner, subjects were again presented with the images of these cars and were asked to report their will-
ingness to purchase this particular car. Till then, subjects of both groups were not informed that consumer choices would be 
required. d Multivariate pattern classification was applied to identify brain regions that predict these consumer choices.  We 
found that activation patterns in the mPFC (top) and the insula (bottom) contained information on individuals’ purchase de-
cisions subsequent to scanning (p < 0.05, FWE corrected). Importantly, this was found to hold true for both experimental 
groups (red ‘high attention’ group; green ‘low attention’ group; yellow overlap of predictive regions across groups; L left hemi-
sphere). Figure adapted from [30]
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in complete darkness, when subjects were 
blindfolded and had their eyes closed, the 
functional connectivity between the visu-
al areas V1 and V3 was clearly retinotop-
ic (. Fig. 11b, right). This finding suggests 
that spontaneous fluctuations are precise-
ly orchestrated between remote brain re-
gions despite the fact that most anatom-
ical connections within cortex are local. 
The use of multivariate decoding tech-
niques to study connectivity patterns and 
information flow between remote brain 
regions opens an interesting new window 
to look at interactions in large scale brain 
measurements obtained with fMRI.

Flow of affective information 
between communicating brains

Information-based imaging does not on-
ly allow for tracking the stream of infor-
mation flow within individual brains, it 
also permits to image the flow of infor-
mation between brains of individuals. 
Such between-brain flow of information 
occurs continuously whenever two indi-
viduals interact. One mechanism that has 
been proposed to play an important role 
in this transmission of information be-
tween individuals is common coding and 
resonance. The idea is that when one in-
dividual perceives another one’s commu-

nicative signals (facial expression, ges-
ture or movement, but also speech) this 
will activate an internal mirror represen-
tation of the underlying neural activi-
ty in the perceiver’s brain, which will al-
low the perceiver to understand the send-
er’s inner state, to anticipate the send-
er’s behavior and to react appropriate-
ly. In other words, first-hand experience 
and perceiving someone else’s experience 
is thought to activate similar neural net-
works, creating a ‘shared space’ between 
senders and perceivers of information. We 
used information-based imaging to in-
vestigate how such ‘shared spaces’ might 
emerge between senders and perceivers 
engaged in facial communication of af-
fect ([33], . Fig. 12a). In a first step, we 
used a simple univariate decoder to iden-
tify brain regions that carry similar emo-
tion-specific information in both the send-
er’s and the perceiver’s brain. The decoder 
was trained to identify the sender’s affec-
tive state based on the level of activity in a 
given voxel in the sender’s brain. We then 
tested whether the same decoder could 
identify the communicated affective state 
from the level of activity in the same vox-
el in the perceiver’s brain. This revealed a 
distributed ‘shared network’ for affect in 
the sender’s and perceiver’s brain includ-
ing temporal, parietal, insular and frontal 
brain regions (. Fig. 12b). Next, we used 
a time-resolved multivariate decoder to 
investigate the temporal dynamics of in-
formation transmission from the sender’s 
to the perceiver’s brain. The decoder was 
trained on the sender’s brain activity in the 
shared network at a given time point and 
then tested on the perceiver’s brain activ-
ity at all other time points of a trial. In-
spection of these time courses indicated 
that information from the sender’s brain 
was dynamically reflected in the perceiv-
er’s brain, with a significant delay in the 
perceiver’s brain. Interestingly, the delay 
between information in the sender’s and 
the perceiver’s brain decreased over time, 
possibly indicating some ‘tuning in’ of the 
perceiver with the sender (Fig. 12c). Our 
data support current theories of intersub-
jectivity by showing that emotion-specif-
ic information is encoded in a very simi-
lar way in the brains of senders and per-
ceivers engaged in facial communication 
of affect. Furthermore, they show that in-
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Fig. 11 8 Measuring cortico-cortical receptive fields (CCRF) with fMRI. a A support vector regression 
was used to predict the activity of a voxel in V3 (blue) from the pattern of activity of all voxels (yellow) 
in V1. The predicted and measured activity in V3 can be compared to obtain a measure of prediction 
accuracy. The distribution of the weights of the multivariate regression defines a CCRF. The CCRF can 
be illustrated on the cortical surface (CS) as well as in the visual field (VF), or it can be depicted in polar 
coordinates (PC). b The CCRF for all voxels in V3 was averaged to obtain the average topographic con-
nectivity structure between V1 and V3. The connectivity structure under visual stimulation (left aver-
age of 4 subjects) and in complete darkness (right average of 8 subjects) is shown in relative polar co-
ordinates Δr and Δα between V1 and V3. Black panels illustrate the visual stimulation. Figure adapted 
from [31]
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formation within this network is succes-
sively transferred from the sender’s brain 
to the perceiver’s brain (with a substantial 
delay in the perceiver’s brain), eventually 
leading to what has been called a ‘shared 
space’ of affect [34].
Cortical surface-based 
searchlight decoding

Specific information about cognitive pro-
cesses can be assessed by analyzing the 
local voxel patterns of fMRI signals with 
multivariate pattern classification. In or-
der to localize these patterns and there-
fore map the information distributed in 
the brain, three-dimensional (3D) search-
light methods are commonly used, in 
which spherical sub-volumes of the fM-
RI measurements are extracted and their 
distributed information analyzed conse-
quently [11]. To further improve the pat-
tern localization, we proposed a corti-
cal surface-based alternative to the 3D-
searchlight technique [10], see also [35]. 
Surface-based searchlights are construct-
ed according to distance along the cortical 
sheet—the intrinsic metric of cortical ge-
ometry—instead of Euclidean distance as 
in 3D-searchlights (. Fig. 13a, b). Using a 
paradigm in which the category of visual-
ly presented objects is decoded, we com-

Fig. 12 8 Information flow between communicating brains. a Experimental design. Communication partners (romantic cou-
ples) were told that they would be scanned simultaneously and that one of them (the perceiver) would see the other (the 
sender) throughout scanning via a video camera. The sender (the female partner) was asked to submerge herself into a spe-
cific emotional situation and to facially express her emotional feelings. The perceiver (the male partner) was uninformed 
about the sender’s task and asked to try to feel with the sender. In fact, the sender’s facial expression was videotaped during 
scanning and shown to the perceiver when he was scanned immediately after scanning of the sender had been completed. 
b Brain regions that carry similar emotion-specific information in the sender’s and the perceiver’s brain. Voxels in which a de-
coder solely trained on the sender’s brain activity could successfully (significantly better than chance) predict the communi-
cated affect from the perceiver’s brain activity are highlighted (p < 0.01, corrected at cluster level). c Decrease of the temporal 
delay between information in the sender’s and in the perceiver’s brain during an emotional period. 0s indicates the beginning 
of a 20s-emotional period. Figure adapted from [33]

Fig. 13 8 Comparison of surface-based searchlight and 3D-searchlight. a Voxels (green cubes) in func-
tional image space that are included in the surface-based searchlight. b Voxels (blue cubes) included 
in the volumetric searchlight (3D) at the same location. c, d Distributions of p-values from a group sta-
tistic comparing the decoding accuracy against chance level are shown on the averaged white matter 
surface. While the results obtained with the volumetric method d clearly spread through the fusiform 
gyrus, the surface-based method c locates the effects only within the collateral sulcus. Figure adapt-
ed from [10]
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pared this method to the standard 3D-
searchlight technique on decoding sensi-
tivity and spatial specificity. Group anal-
yses of decoding accuracies produced by 
both methods showed similar distribution 

of informative regions (. Fig. 13c, d). The 
surface-based method however achieved a 
higher spatial specificity with comparable 
peak values of significance. Our findings 
also show that a surface centered in the 

middle of the gray matter contains more 
information compared to the white-gray 
boundary or the pial surface. Further-
more, by extracting patterns that are local 
in cortical coordinates, the surface-based 
method avoids the accumulation of noise 
sources that lie outside of the gray matter 
and samples information from voxels that 
represent ‘true’ cortical neighbors.

Diagnostic information 
for multiple sclerosis in 
normal-appearing brain areas

Finally, pattern recognition algorithms 
can also be used for clinical diagnostics in 
disease classification from MRI signals. In 
a recent study [36], we used pattern-recog-
nition techniques to investigate diagnostic 
information for multiple sclerosis (MS; re-
lapsing-remitting type) contained in stan-
dard MR images. Specifically, we analyzed 
information contained in patterns extract-
ed from lesioned, but also from normal-
appearing grey and white matter (NAGM/
NAWM) areas (. Fig. 14). Following the 
current diagnostic guidelines for MS [37], 
NAGM and NAWM measured by con-
ventional MR do not contain diagnos-
tic information. An experienced neurol-
ogist conducted a lesion mapping based 
on MR images acquired from 41 MS pa-
tients and 26 healthy controls with a turbo 
inversion recovery magnitude (TIRM) se-
quence. TIRM images were spatially nor-
malized and segmented into three areas 
of homogenous tissue (lesions, NAGM 
and NAWM) based on the lesion map-
ping and templates from a brain tissue at-
las. For each tissue-specific area, multi-
ple local classification analyses were con-
ducted based on voxel intensity patterns 
extracted from small spherical subregions 
of these larger areas to classify subjects 
into groups (MS patient vs. healthy con-
trol). The diagnostic accuracy obtained 
for each spherical subarea is considered 
as a measure of regional diagnostic infor-
mation (. Fig. 14). For the analysis based 
on lesioned tissue, a posterior parietal 
WM area contained maximal diagnos-
tic information (96% accuracy, p < 10−13). 
Among NAGM areas, a cerebellar region 
was maximally informative (84% accura-
cy, p < 10−7). Finally, a posterior brain re-
gion was maximally informative among 

Fig. 14 8 Diagnostic information for MS in areas with lesions and normal-appearing brain areas. a Lo-
cal classification approach: Local spherical patterns were extracted from individual MR images (top 
left) and used for classification between multiple sclerosis (MS) patients and healthy controls (top 
right). The result is a map, which indicates the decoding accuracy for each position in the brain (bot-
tom). b Diagnostic information for MS separated by tissue type: Regions containing diagnostic infor-
mation are depicted separately for lesion matter, normal-appearing grey matter (NAGM) and normal-
appearing white matter (NAWM). FFG fusiform gyrus, LFN lentiform nucleus, PYR pyramis, WM white 
matter. c, d MR image features of lesioned tissue and normal-appearing brain tissue with diagnos-
tic information: Examples of individual intensity patterns are shown for healthy controls (HC) and MS 
patients in native space, separately for lesioned tissue (c) and NAGM (d). The border of the pattern is 
marked by white contour lines and the polar plots below represent the distribution of intensity values 
within this pattern. Whereas for lesioned tissue the classifier actually uses lesion information, it is hard 
to see any difference by naked eye for NAGM. Therefore, the classifier uses information, which is kind 
of invisible to the human eye. Figure adapted from [36]
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NAWM areas (91% accuracy, p < 10−10). 
We found regions with diagnostic infor-
mation for MS in lesioned, NAGM, and 
NAWM areas. Identification of informa-
tion in NAGM and NAWM counteracts 
the common notion that standard MR 
techniques are too insensitive to capture 
disease-related tissue variations in nor-
mal-appearing areas of MS patients.

Conclusion

As our technical abilities to measure 
brain activity and brain structure in-
crease, the analysis methods have to 
advance with them to make use of the 
multi-dimensional nature of the data. 
Here, we have presented several studies 
that have used MVPA and fMRI to study 
mental states in humans. While multivar-
iate data analysis has substantially ex-
tended the scope of neuroimaging, there 
are still many open questions on how 
particular aspects of information are rep-
resented in the underlying neural circuits 
from which fMRI can only provide a very 
indirect measure. How is the distributed 
representation of objects, imagination, 
learning, perceptual choices, free choic-
es or rules related to the topology of the 
underlying neural circuitry? It will be one 
of the challenges to narrow down the 
gap between the informative patterning 
measured in fMRI signals and the func-
tion and topology of neural structures 
whose activity gives rise to the fMRI sig-
nal. Overall, MVPA techniques applied to 
fMRI data have opened a new content-
selective perspective for looking at hu-
man brain activity.
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