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Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environ-
ment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during
task-free rest based on neural similarities with task-related affective mental states. We acquired functional mag-
netic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an
attribution task (Session A) and while they reported the occurrence of comparable mental states during task-
free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response pat-
terns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated
in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted
the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This
demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common
neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of
unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool
for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming
based on neural similarities with task-based experiences.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Although thoughts and feelings are often elicited by events in the
here and now, not all experiences are generated from incoming sensory
information. Indeed, many powerful human experiences (such as grief,
anger or joy) can occur in the absence of any direct external referent.
These subject driven emotional and cognitive states that are unrelated
to events in the here and now are a core element of the human condi-
tion: they make up half of our waking thought (Killingsworth and
Gilbert, 2010; Smallwood and Schooler, 2006) and are implicated in
our emotional lives because of their robust links to state and trait un-
happiness (Killingsworth and Gilbert, 2010; Smallwood and O'Connor,
2011; Smallwood et al., 2007, 2009; Watts et al., 1988).

As subject driven, self-generated mental states are a major element
of our lives, it is surprising that we yet lack a rigorous understanding
of how they occur and are processed in the brain. Given the evidence
for their role for our emotional lives and happiness, the present study
aimed to understand the neural basis of the affective dimension of sub-
ject driven mental states. Single cell recording studies in non-human
primates as well as brain imaging studies in humans have frequently
implicated the medial orbital frontal cortex (mOFC) and the adjacent
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ventromedial prefrontal cortex (vmPFC) in the processing of the af-
fective valence and value of a wide-range of stimuli (Berridge and
Kringelbach, 2013; Grabenhorst and Rolls, 2011; Kringelbach, 2013;
Lebreton et al.,, 2009; Roy et al., 2012; Schoenbaum et al., 2011;
Wallis, 2007; Wilson-Mendenhall et al., 2013). The mOFC is considered
to be a central node in the brain's emotional circuits (Roy et al., 2012)
and damage or dysfunction in this region has been linked to altered
emotional responses and impaired emotion regulation (Bechara et al.,
2000; Davidson et al., 2000; Izquierdo et al., 2005; Rolls et al., 1994;
also see Etkin and Wager, 2007; Etkin et al., 2011). Moreover, it has
been proposed that the mOFC and adjacent portions of the vmPFC are
involved in the generation of affective meaning (Roy et al., 2012). In
particular, this region was suggested to act as a hub that connects vari-
ous systems such as sensory systems, interoceptive signals, long-term
memory, and social cognition that contribute to the representation of
conceptual information relevant to our well being and future prospects
and the generation of affective responses. Based on this evidence, we
hypothesized that the mOFC may play a general role in processing
subject driven affective mental states that are generated in the absence
of an external referent.

One difficulty in assessing the neural basis of internally driven affec-
tive and cognitive states is that their independence from external stim-
uli, as well as their spontaneous occurrence, makes these experiences
hard to study using the classical experimental paradigms of cognitive
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science (Smallwood, 2013a,b). The present study explored whether we
can take advantage of multivariate pattern analysis (MVPA) (Haxby
et al., 2001; Haynes et al., 2007; Kriegeskorte et al., 2006; Norman
et al.,, 2006), a machine-learning framework that has been used to dem-
onstrate that conceptually similar task-related mental states can be de-
termined based on the spatial similarities within the evoked neural
signals (Corradi-Dell'Acqua et al., 2011; Kahnt et al., 2011; Kassam
et al., 2013; Lewis-Peacock and Postle, 2008; Poldrack et al., 2009).
Some views of internally driven, task-unrelated thoughts have sug-
gested that they reflect fundamentally unique neural processes, with
an extreme example being the notion of task-positive and task-negative
networks (Fox et al.,, 2005; see Spreng, 2012 for a review of this issue).
Recent neuroimaging work has provided a more nuanced perspective:
There are, for example, spatial similarities between the neural networks
engaged by external tasks and those revealed during periods of uncon-
strained rest (Smith et al., 2009). Such evidence suggests that subject
driven thought may not differ from states elicited by external events
in the neural processes they recruit, but rather may be unique in the
manner that they are initiated (Smallwood, 2013a,b). The present
study capitalized on this assumption by using MVPA to overcome fun-
damental difficulties in determining the occurrence of subject driven
mental states by decoding the affective content of unconstrained
thought based on its neural similarities with emotional experiences
that are generated as part of a well controlled experimental task.

In the current study, functional magnetic resonance imaging (fMRI)
was acquired from healthy participants who completed two indepen-
dent experimental sessions, separated by a one-week interval with
the session order counterbalanced across subjects. In Session A, partici-
pants generated positive and negative emotional mental states in
response to external cues in an attribution task (Fig. 1A). In Session B,
participants were allowed to rest and thought sampling was used to
examine the valence of spontaneously occurring self-generated thought
(Fig. 1B). We expected brain responses in areas such as the mOFC to

provide information on the affective tone of thoughts regardless of
whether they occur as a consequence of an external task, or during un-
guided task-free processing. Using MVPA, we tested whether the neural
representations of affective mental states elicited as part of a task could
be used to decode the content of emotional experiences that are gener-
ated during periods of task-free rest. In addition, we asked a subset of
these participants to undergo a standard resting-state scan (Session C)
that took place approximately three months apart from Session B. This
last step allowed us to explore whether brain responses in the mOFC
reflected participants' tendency to self-generate positive thoughts in a
context that had no external task nor was disrupted by thought
sampling.

Materials and methods
Participants

Thirty healthy volunteers (15 female, aged between 21 and 33 years,
mean =+ SD: 26 4 3 years) participated in two fMRI sessions (Sessions A
and B) and a behavioral posttest. A subset of 20 participants also took
part in a separate task-free resting-state fMRI scan (Session C) (average
time lag between Session B and Session C: 97 days + 38 days SEM). Par-
ticipants were German native speakers, right-handed, free of psychiatric
or neurological history, and had normal or corrected-to-normal vision.
They were paid €8 per hour for their participation in the experiment.
Data of three participants had to be excluded because of head move-
ment beyond 3 mm/3° during scanning sessions (Sessions A and B).
Moreover, functional data of two participants of Session A and of one
participant in Session B had to be discarded due to head movements
of more than 3 mm within the session. No data had to be discarded
from resting-state Session C. Written informed consent was obtained
from all participants, and the local ethics committee approved our
study.

A Session A. Task-related positive and negative thoughts.
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Fig. 1. Experimental stimulation in Session A and Session B. Participants took part in two scanning sessions (A and B) separated by a 1-week interval, with the session order
counterbalanced across subjects. In Session A, participants performed 8 blocks of positive and negative self-referential attributions that were externally cued by centrally presented
trait adjectives. In Session B, they took part in 6 runs of task-free rest periods of 9 min each during which they were asked to fixate on a centrally presented fixation cross. At unpredictable
intervals, rest periods were intermitted and thought samples were obtained to assess participants’ types of thoughts. Thereby, the affective content of mental states during rest could be
assessed. In addition, thought probes were used to assess whether participants' thoughts were related to something in the past or the future and to the self or others.
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Task

Participants took part in two scanning sessions (Sessions A and B)
separated by a 1-week interval, with the session order counterbalanced
across subjects. A subset of subjects participated in an independent
resting-state scan (Session C) that was approximately three months
apart from Session B.

Session A

To obtain task-related brain responses, participants performed
blocks of a self-referential attribution task (based on Addis et al.,
2007) in which they were consecutively presented with three trait
adjectives that were either positive (positive attribution blocks) or neg-
ative (negative attribution blocks) (Fig. 1A). Trait adjectives were se-
lected from previously published stimuli (Herbert et al., 2006) based
on behavioral pilot studies using independent samples. Each of the 48
trait adjectives (24 positive, 24 negative) was presented once for the
duration of 9 s and was the target of a self-referential attribution
where participants were asked to imagine themselves being as de-
scribed by the visual cue. Participants indicated the successful genera-
tion of a vivid attribution via a button press and were asked to
maintain and to elaborate on this attribution for the remainder of the
trial. Trait adjectives within a task block were separated by variable
delays of 4 to 8 s during which a black fixation cross against a white
background was shown. The presentation order of trait adjectives was
randomized within and across task blocks. In each of the 8 runs in Ses-
sion A, participants performed one positive and one negative attribution
block, with the block order counterbalanced across runs and random-
ized across participants. Task blocks were followed by intervals of 30
to 90 s during which participants were asked to fixate on a centrally
presented fixation cross. Subsequent to the scanning session, partici-
pants rated the valence of each attribution in a self-paced computerized
task outside of the scanner to confirm results of the independent behav-
ioral pretests.

Session B

To obtain functional data during unconstrained affective thought,
participants took part in task-free rest periods (6 runs of 9 min each)
during which they were asked to fixate on a black fixation cross central-
ly presented against a white background. At unpredictable intervals
(minimum of 30 s), rest periods were intermitted and thought samples
were obtained to asses participants' types of thoughts (Fig. 1B). Using a
continuous rating scale (ranging from — 3 to 3), participants first re-
ported the affective valence of their thoughts prior to the respective
thought sample. Self-reported valence (z-scored) was used to identify
‘positive’ or ‘negative’ thoughts in Session B. In addition, thought probes
were used to assess whether participants' thoughts were related to
something in the past or future and to the self or others. Accounting
for the possibility that thoughts may involve some elements relating
to both anchors of the scale, participants were instructed to report the
primary affective tone (positive or negative) and the focus (self or
others; past or future) of the preceding thought. Each of the three rating
scales that were presented in a fixed order was displayed for 8 s. Partic-
ipants responded by pressing the left and right buttons of a button box
that was placed in their right hand to move the courser from its ran-
domized initial position. In total, we collected 36 thought samples in
Session B for each participant. Please note that a smaller number of
thought samples (24) were also collected in rest intervals between attri-
bution blocks of Session A (minimum duration of rest intervals = 30 s)
to assess intra-individual stability of the self-reported content of mental
states during task-free periods. Functional runs of both scanning
sessions were divided by breaks of approximately 1 min in which
no brain responses were acquired. Presentation 14.9 (http://www.
neurobs.com) was used for stimulus presentation and data collection.

Session C

An additional standard resting-state scan that was undisturbed by
thought sampling was obtained in an independent Session C. Partici-
pants were instructed to keep their eyes open, to fixate a centrally pre-
sented white cross against a black background and to think of nothing in
particular.

Functional image acquisition

Functional imaging was performed on a 3 T Verio scanner (Siemens
Medical Systems, Erlangen) equipped with a 12-channel head coil. T2*-
weighted functional images were obtained using an echoplanar imaging
(EPI) sequence (TR = 2 s, TE = 27 mis, flip angle = 90°, 3 x 3 x 3 mm,
1 mm interslice gap, matrix size 70 x 70, 37 slices tilted at approximate-
ly 30° from axial orientation, ipat = 2). In each of the 8 runs of Session A,
225 volumes were acquired. In Session B, 258 volumes were measured
for each of the 6 runs. Functional runs of both scanning sessions were di-
vided by breaks of approximately 1 min when no functional images
were obtained. Subsequent to the functional imaging of Session B, a
T1-weighted high-resolution anatomical image was collected using a
MPRAGE sequence (TR = 2.3 s, TE = 2.98 ms, flip angle = 9°,1 x 1 x
1 mm, matrix size 240 x 256, 176 sagittal slices, ipat = 2) using a 32-
channel head coil. In an independent scanning Session C, we also ob-
tained task-free fMRI time series for a subset of 20 participants. For
this resting-state data, 150 volumes were acquired over 5 min using
the same sequence as the task-related fMRI data. During Session C, par-
ticipants were instructed to keep their eyes open, to fixate a centrally
presented white cross against a black background and to think of noth-
ing in particular.

fMRI data analysis

Functional images of all scanning sessions were analyzed using the
statistical parametric mapping software SPM8 (http://www.fil.ion.ucl.
ac.uk/spm) implemented in Matlab. For each data set, preprocessing
consisted of slice-time correction, spatial realignment and normaliza-
tion to the Montreal Neurological Institute (MNI) brain template
(voxels were resampled to 2 x 2 x 2 mm), and spatial smoothing
using a Gaussian kernel of 8 mm FWHM. Preprocessed data of Sessions
A and B were analyzed using a general linear model (GLM) as imple-
mented in SPM8 (Friston et al., 1995). For every run, neural activation
was modeled by distinct regressors convolved with a canonic hemody-
namic response function (hrf). A 128 s high-pass cutoff filter was
applied to eliminate low-frequency drifts in the data of Sessions A and
B independently. For each participant, we estimated multiple GLMs.

GLM1

To identify brain regions that encode the affective content of
externally cued, task-related thoughts in Session A, we used a GLM
that estimated two regressors of positive (R1) and negative attributions
(R2) for each run, with the duration equal to the time period from the
cue onset (trait adjective) to participants' button press for that trial.
The remainder of the trial was modeled by two additional regressors,
for positive and negative attributions separately (R3, R4). Attributions
were defined as ‘positive’ and ‘negative’ based on valence ratings ob-
tained in behavioral pretests using independent samples. In the rare
cases (average of 2.58% of trials + 0.49 SEM; Supplemental Fig. 1)
where participants' self-reported valence (obtained after Session A) dif-
fered from this a-priori assignment, attributions were assigned based
on participants' stated affective experience. The GLM also modeled the
rest periods between task blocks (30 to 90 s, R5), the three rating
periods for the limited number of thought probe samples in Session A
(8 s each, R6-R8), and three parametric regressors corresponding to
self-reports on these scales (z-scored per rating scale, R9-R11) as
regressors of no interest. Parameter estimates of the externally cued,
task-related positive and negative attributions (R1, R2) were then
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applied to multivariate pattern analyses (MVPA, see below). Please note
that GLM1 estimated regressors for each of the 8 functional runs, ensur-
ing that the number of regressors applied to MVPA was balanced for
positive and negative conditions.

GLM2

To identify brain regions that encode the affective content of
unconstrained self-generated thoughts during task-free rest in Session
B, we used a GLM that estimated two regressors corresponding to rest
periods including positive (R1) and negative thoughts (R2) for each
run. Both regressors were modeled using a fixed duration of 30 s prior
to the respective thought sample, corresponding to the minimum dura-
tion of undisturbed rest between thought samples. Assignment of
rest periods was based on self-reported valence in the thought probes
(z-scored). Similar to GLMT1, the model included the three rating pe-
riods of the thought probe samples (8 s each, R3-R5) and two paramet-
ric regressors of the corresponding ratings (z-scored) that were not
used to sort the prior rest periods (i.e., ‘past-future’, ‘self-other’, R6,
R7) as coregressors of no interest. Parameter estimates of positive and
negative thoughts during task-free rest (R1, R2) were then applied to
MVPA (see below). Similar to GLM1, the number of regressors for
positive and negative thoughts was balanced to prevent biases in the
classification approach.

In addition to MVPA, we also tested for conventional univariate
effects of affective valence for task-related attributions (GLM1, Session
A) and thoughts during task-free rest (GLM2, Session B). For each par-
ticipant, we computed contrast statistics against baseline for regressors
of interest (R1, R2; for GLM1 and GLM2, respectively). Individual
contrast images of the respective GLM were then used to compute
random-effects group analysis using paired t-tests as implemented in
SPMS. Significant clusters were identified using a statistical threshold
of p < 0.05, FDR corrected for multiple comparisons at the cluster level
(height threshold of p < 0.005).

Multivariate pattern analyses (MVPA)

Whole-brain MVPA searchlight decoding within Session A

In a first step, a ‘searchlight’ decoding approach was used to identify
brain regions that predict the valence of externally cued, task-related
thoughts in Session A (Fig. 1A). This multivariate pattern classification
approach does not depend on a priori assumptions about informative
brain regions or prior voxel selection, avoiding the problem of circular
analysis (or ‘double dipping’) (Kriegeskorte et al., 2009) and ensuring
an unbiased analysis of neural activation patterns throughout the
whole brain (Haynes et al., 2007; Kriegeskorte et al., 2006).

For each participant, a sphere with a radius of 3 voxels (Bode et al.,
2011; Soon et al., 2008, 2013; Weygandt et al., 2012) was defined
around a given voxel v; of the measured volume. For every run of
Session A (total of 8 runs), parameter estimates (R1 and R2, GLM1)
were extracted for each of the N voxels within this spherical cluster
and transformed in an N-dimensional pattern vector. Pattern vectors
were created separately for positive and negative attributions. Pattern
vectors of all runs but one (‘training dataset’) were then used to train
a linear support vector machine classifier (SVM, http://www.csie.ntu.
edu.tw/~cgjlin/libsvm) using a fixed cost parameter C = 1. This provided
the basis of the subsequent classification of the pattern vectors of the
remaining run (‘test dataset’) as representing either positive or negative
attributions. The procedure was repeated several times, always using
a different run as test dataset to achieve a robust run-wise cross-
validation (i.e., 8-fold cross-validation for 8 runs of Session A). For
each spherical cluster, the amount of predictive information on the
valence of task-related thoughts was represented by the average
percentage of correct classifications across all cross-validation steps
and was assigned to the central voxel v; of the sphere. This support
vector classification (SVC) was successively carried out for all spherical
clusters created around every measured voxel. Thereby, we obtained a

three-dimensional map of average classification accuracies for each
participant. Individual accuracy maps were then entered into a
random-effects group analysis using a simple t-test as implemented in
SPMB8. This allowed identifying brain regions that reliably encoded the
affective content of task-related mental states across participants.
Classification was based on two alternatives (‘positive’ versus ‘negative’
attributions), resulting in a chance level of 50%. Only regions showing
significant decoding accuracies above chance and passing the statistical
threshold of p < 0.05 (FDR corrected for multiple comparisons at the
cluster level, height threshold of p < 0.005) were considered relevant
for information encoding. To test for biases in the classification, an addi-
tional control analysis was implemented that matched the described
decoding analyses except for assigning randomly selected, permuted
labels to the data (Tusche et al,, 2010).

ROI-based MVPA within Session B

Next, we tested whether similar brain regions encode the valence of
mental states during task-related attributions (Session A) and task-free
rest periods (Session B). To address this issue, brain regions that predict-
ed the valence of thoughts in Session A were defined as regions of inter-
est (ROIs) for the decoding of task-unrelated positive and negative
thoughts during rest periods in Session B. Thus, we used results of an
independent scanning Session A to select features for the classification
of the affective content of thoughts in Session B. Each ROI was defined
by a 10 mm sphere around the statistical peak of the predictive cluster
(Table 1), using the MarsBaR toolbox (see Fig. 2D for an example). For
each participant, we then investigated whether local activation patterns
within a particular ROI (extracted from GLM2, R1 and R2) predict the
valence of mental states during rest periods, as reported in subsequent
thought probe samples. Except for the selection of activation patterns
that was defined by the ROI, the classification procedure was identical
to the searchlight decoding approach described above. For each partici-
pant, the ROI-specific predictive information on the valence of thoughts
during task-free rest was represented by the average percentage of cor-
rect classification across the run-wise cross-validation steps. To assess
the statistical significance of the predictive information across partici-
pants, we submitted the average predictive accuracy of each ROI to a
t-test against the chance level of 50% as implemented in Matlab R2013a.

ROI-based MVPA across Sessions A and B
In a next step, we tested whether activation patterns obtained
during externally cued, task-related thoughts in Session A can be used

Table 1
MVPA searchlight decoding in Session A. Brain regions that encode the valence of task-
related positive and negative mental states during self-referential attributions.

BA Accuracy T K MNI
X Y z

mOFC LR 11 62 560 69 0 48 -8
Acc* R 32/11 61 499 108 14 36 2
Middle frontal gyrus* L 8 62 520 108 —30 6 70
Middle frontal gyrus L 8 62 474 67 —24 28 50
PCC/Precuneus* L/R 29 63 472 118 —8 —46 8
Temporal pole R 21 63 410 97 50 8§ —28
Middle temporal gyrus* L 21/20 62 634 262 —56 —36 —10
Middle temporal gyrus L 21/20 61 431 87 —56 —12 —22
Hippocampus L 61 468 77 26 —38 =2
Cerebellum R 63 551 78 28 —76 —30
Cerebellum L 61 389 75 —26 —67 —34

Results are reported at statistical threshold of p < 0.05, corrected for multiple comparisons
at cluster level using FDR; only peak activations of clusters are reported; mOFC = medial
orbitofrontal cortex; ACC = anterior cingulate cortex; PCC = posterior cingulate cortex;
L = left hemisphere, R = right hemisphere, BA = Brodmann area, K = cluster size,
MNI = Montreal Neurological Institute.

* Indicates clusters that are significant after FWE correction at p < 0.05.


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

A. Tusche et al. / Neurolmage 97 (2014) 107-116 111

self-reported valence
o

negative
attributions

positive
attributions

m

707 n.s.

65
60 1

55 4

_level

decoding accuracy [%]

45

Session B first

Session A first

chance

task-related
attributions

task-free
rest

valence in Session B
o

14 05 0 05 1 15 2 25
mOFC degree centrality

Fig. 2. Results. A. Self-reported valence of externally cued attributions obtained subsequent to Session A confirmed that participants experienced the attributions in positive task-blocks as
more positive than those in negative task-blocks (p = 0.001; bars display means and SEM). B. The average experienced valence in the attribution task (Session A) was positively correlated
with participants' average self-reported valence during task-free rest periods in Session B, separated by a one-week interval (Pearson'sr = 0.34, p = 0.03, one-tailed). C. MVPA searchlight
decoding was used to identify brain regions that encode the valence of task-related mental states in Session A. Activation patterns in the mOFC predicted the affective content of self-
referential attributions (average decoding accuracy of 62%). D. We created a spherical ROI around the statistical peak of the mOFC cluster that encoded the valence of task-related attri-
butions in Session A. E. Multi-voxel response patterns in the mOFC-ROI reliably predicted the valence of self-generated mental states during task-free rest prior to thought samples (Session
B). This was found to hold true independent of whether participants first performed Session A or Session B (p = 0.71, illustrated in dark gray). Supplemental ROI-based decoding using
random labels yielded predictions close to the chance level of 50% (illustrated in light gray), indicating that our decoding approach was unbiased. Mean and SEM are displayed. F. ROI-based
analysis found that the average degree centrality in the mOFC derived from an independent resting-state Session C (without thought probes) was positively correlated with participants’
average valence of task-free thoughts during rest in Session B (p < 0.025, corresponding to r = 0.51, z-transformed values are displayed).

to reliably predict the affective content of unconstrained thoughts dur-
ing rest periods in Session B. For each participant, we trained a classifier
on ROI-specific activation patterns of all runs of Session A (‘positive’ ver-
sus ‘negative’ attributions, GLM1), and tested the classifier on ROI-
specific activation patterns of one run of Session B (‘positive’ versus
‘negative’ thoughts during rest, GLM2). Please note that for the cross-
session classification, each activation pattern was normalized to ensure
that predictions are based on information encoded in the distributed
response patterns and do not merely reflect average signal differences
across conditions (as identified for positive and negative attributions
in Session A). More precisely, we removed the mean response (across
all voxels within the pattern) from each voxel and divided the resulting
values by the standard deviation for that response pattern (Misaki et al,,
2010). Importantly, this across-voxel normalization preserves the shape
of the response patterns (Misaki et al., 2010). For each participant, we

estimated the average ROI-specific classification accuracy (run-wise
cross-validation) and submitted it to a t-test to assess the statistical
significance of the predictive information across participants.

Session C (fMRI resting-state data) — degree centrality

In addition to our functional data from Sessions A and B, for a subset
of 20 participants, we also acquired resting-state fMRI data in an inde-
pendent Session C in which no thought probes occurred during task-
free rest. Session C data were used to assess the relationship between
functional network integration of the mOFC and individual differences
in the affective tone of self-generated mental states during rest in Session
B. Importantly, functional data undisturbed by thought sampling enabled
us to explicitly test whether associations of the mOFC with affective pro-
cessing of self-generated thought were an artifact of thought sampling,
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for instance due to metacognition, response preparation or biases in self-
reports. We computed the degree centrality of the preprocessed resting-
state data as a robust marker of functional network integration of a brain
region (Buckner et al., 2009; Zuo et al., 2012). Resting-state data was
preprocessed using the data processing assistant for resting-state fMRI
(Song et al,, 2011; Yan and Zang, 2010) (http://www.restfmri.net). Pre-
processing parameters were chosen to closely correspond to those for
the processing of Sessions A and B, with the exception that data was
corrected for nuisance signals (i.e., average signal of cerebro-spinal fluid
and white matter, and motion parameters) and band-pass filtered to be
within 0.01 and 0.1 Hz (Buckner et al., 2009; Zuo et al., 2012). Based on
the cross-correlation matrix between the time series of all voxels in the
brain, we computed the weighted degree centrality of every voxel to
quantify the relevance of each particular voxel for the whole brain net-
work. We followed previous recommendations and thresholded the cor-
relation matrix at r > 0.25 prior to estimating the centrality (Buckner
et al., 2009). For each participant, centrality data at each voxel were nor-
malized using a z-transform that took into account centrality data across
the entire brain (Buckner et al., 2009). Statistical analysis of centrality
data was carried out using SurfStat (Worsley et al., 2009) (http://www.
math.mcgill.ca/keith/surfstat/). We assessed the relationship between
participants' average experienced valence of thought during task-free
rest periods in Session B (as reported in the thought samples) and aver-
age degree centrality of the mOFC-ROI based on Session C. We also per-
formed a supplemental whole-brain correlation analysis between
participants' average valence of thoughts during task-free rest periods
in Session B and voxel-wise degree centrality in Session C (thresholded
at p < 0.005, uncorrected, k > 20 voxels).

Results
Behavioral

Attributions

Average attribution times were comparable for positive (mean +
SD: 4.00 + 1.57 s) and negative task conditions (4.14 4 1.54 s) (paired
t-test, p > 0.05, t = —1.55), indicating that task-performance was
comparable for both attribution blocks. Attribution-specific valence
judgments (Likert scale, range: —3 to + 3) obtained after Session A
confirmed that attributions in positive task blocks were experienced
as more positive (1.98 + 0.42) than attributions in negative task blocks
(—1.73 &+ 0.46; paired t-test, p = 0.001; t = 21.73; Fig. 2A).

Thought samples

The average valence of task-related attributions in Session A
(0.32 £ 0.26) was positively correlated with the average valence of
thoughts during task-free rest periods in Session B (0.77 £+ 0.52;
Pearson's r = 0.34, p = 0.03, one-tailed), suggesting that individual
tendencies to engage in positive or negative thoughts generalized
across task-related and unconstrained affective thoughts (Fig. 2B). No
relationship of mean attribution valence was found with participants’
tendency to think about the past or the future (0.32 + 0.46; i.e. slightly
future-oriented) or others or oneself (0.23 + 0.53, i.e. slightly self-
oriented) as assessed using thought samples in Session B (all
p > 0.05). Within Session B, average ratings per thought sample
scale were not significantly correlated (all p > 0.05). Subject-wise
correlations of thought probe ratings and initial positions of the ratings
confirmed that randomized initial positions of the scales did not cause
response biases in Session B (all p > 0.05).

fMRI

Decoding the valence of task-related attributions in Session A

A whole-brain searchlight decoding approach was used to identify
brain regions that encode the valence of externally cued, task-related
thought in Session A. Local activation patterns in the medial

orbitofrontal cortex (mOFC; Fig. 2C), anterior cingulate cortex (ACC),
the posterior cingulate cortex (PCC), middle temporal gyrus and middle
frontal gyrus were found to reliably predict the valence of self-
referential attributions (p < 0.05, corrected for multiple comparisons at
cluster level; see Table 1 for details and complete list of results).
Supplemental permutation analyses confirmed that response patterns
in all clusters yielded classification accuracies that are highly unlikely to
be obtained by chance only (Supplemental Table 1). Please note that
the accuracy level of the prediction (see Table 1) is comparable to previ-
ous studies that applied a linear support vector machine classifier with a
fixed cost parameter (C = 1) as used in our searchlight decoding
approach (Bode and Haynes, 2009; Bode et al., 2013; Hampton and
O'Doherty, 2007; Heinzle et al., 2012; Reverberi et al., 2012; Soon et al.,
2008; Tusche et al., 2010) (see supplemental material for summary statis-
tics of decoding accuracies).

Supplemental univariate analysis identified clusters in the bilateral
mOFC (peak at [MNI —6, 44, —16], t = 5.96), PCC (peak at [MNI —6,
—62, 18], t = 4.56), ventral striatum (peak at [MNI 18, 6, 6], t = 5.24
and [MNI — 18, 4, —4], t = 4.92), right cerebellum (peak at [MNI 8,
—74, —30], t = 5.67) and left posterior superior temporal gyrus
(peak at [MNI —48, —60, 22], t = 5.26) that were significantly more
strongly activated for positive than for negative attributions (p < 0.05,
corrected for multiple comparisons), indicating that predictive informa-
tion in activation patterns of the mOFC and the PCC might be partly due
to signal increase in these areas during positive attributions. The reverse
contrast [negative > positive attributions] did not yield significant
results. A supplemental parametric modulation analysis confirmed
that univariate brain responses in the bilateral mOFC (peak at [MNI
14, —46, —16], t = 4.58) reflected the affective tone of task-related
thoughts in Session A (see Supplemental Fig. 2 for an illustration and a
complete list of results).

Decoding the valence of thoughts during task-free rest periods in Session B

ROI-based prediction. In a next step, we investigated whether similar
brain regions encode the valence of thought during both externally
cued attributions and unconstrained, task-free rest periods, respectively.
To formally address this issue, we defined brain regions that predicted
the valence of attributions in Session A (Table 1) as regions of interest
(ROIs). When these ROI-based decoding analyses were applied to the
data from Session B (within-Session B decoding), we found that distrib-
uted activation patterns in the mOFC (Fig. 2D) provided information
about positive and negative thoughts during rest (average of 60%
decoding accuracy across participants, 4-2.99 SEM, p = 0.003). No effect
of session order was found (p = 0.71; Fig. 2E). Local response patterns
in the ACC were also predictive of participant's task-free positive and
negative thoughts prior to the respective thought sample (average of
57% decoding accuracy, +2.43 SEM, p = 0.009). No other ROI that
encoded task-related positively and negatively valenced thoughts in
Session A was found to predict the affective tone of mental states in
Session B significantly above chance level (all p > 0.17).

Having established that the mOFC and the ACC encode the affective
content in Sessions A and B respectively, we then tested whether task-
based response patterns (Session A) can be used to predict the occur-
rence of emotionally valenced thoughts during unconstrained, task-
free rest periods (Session B). More precisely, this cross-session decoding
approach explicitly examined whether similar neural codes underlie
both experiences and, hence, whether such a neural similarity can be
used to identify the content of unconstrained thoughts during task-
free rest. This cross-session classification revealed that individual re-
sponse patterns in the mOFC obtained during attributions predicted
the valence of participants' self-generated thoughts in Session B (aver-
age of 57% decoding accuracy, 4+2.94 SEM, p = 0.030), independent
of session order (p = 0.98). No other ROI exhibited patterns that were
predictive across sessions (all p > 0.11). To provide further evidence
for the statistical significance of the mOFC-based prediction we used
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permutation tests. To this end, we repeated the above decoding
approach 1000 times with randomly assigned test labels (i.e. ‘positive’
versus ‘negative’) to the test data. This resulted in a permutation distri-
bution of average decoding accuracies that would be achieved by
chance only (i.e. a null distribution). The mOFC-based prediction
of 57% (across run-wise cross-validation and across participants)
corresponded to the 99.6 percentile of the permutation distribution, cor-
responding to a probability of alpha = 0.004 that the above prediction
was realized by chance. Due to computational demands, supplemental
permutation test was restricted to ROI-based analysis. Supplemental
permutation tests also confirmed that clusters reported in Tables 1 and
2 yielded classification accuracies that are unlikely to be obtained by
chance (all probability of alpha < 0.05).

To ascertain the specificity of the information contained in the mOFC
for the affective content of thoughts, we estimated two additional GLMs
that were identical to GLM2 (‘positive’ or ‘negative’), except that the rest
periods prior to the thought samples in Session B were sorted based on
their ratings of ‘future’ or ‘past’ (GLM3) and ‘self or ‘other’ (GLM4). ROI-
based predictions on the activation patterns extracted from the param-
eter estimates of the respective GLM did not yield results for any of the
ROIs (mOFC [past-future]: average of 49% decoding accuracy, p = 0.48;
mOFC [self-other]: average of 51% decoding accuracy, p = 0.81; all
other p > 0.16). Thus the mOFC activation pattern is specific to the emo-
tional component of thought. Whole brain searchlight decoding on self-
directed versus other directed thoughts in Session B (as reported in the
thought samples) confirmed that a more dorsal cluster in the mPFC
(peak at [MNI 26, 38, 14]) encoded the self-directedness of thoughts
(Supplemental Fig. 3).

In addition, we investigated whether task-based response patterns
in the mOFC-ROI (Session A) encode the experienced valence of
thoughts during task-free rest periods between attribution blocks (as
reported in the thought samples obtained in Session A). Similar to
GLM2, we re-estimated GLM1 with 2 regressors corresponding to the
30 s rest interval prior to ‘positive’ and ‘negative’ thought samples. As
expected, task-related response patterns in the mOFC predicted the va-
lence of thoughts between the task-blocks significantly above chance
level (average of 56% decoding accuracy, p = 0.026). This provides a
replication of the overlap between task driven and subject driven self-
generated thoughts. However, due to the close temporal proximity of
these thought probes to the attribution task, the paper focused on the
task-based prediction of thought samples obtained in Session B.

Whole brain analyses. To provide further evidence for the role of the
mOFC in unconstrained, self-generated positive and negative thoughts
in Session B, we performed a whole brain searchlight decoding for
each participant. Confirming the ROI-based decoding results (within-

Table 2
MVPA searchlight decoding in Session B. Brain regions that encode valence of task-free
mental states during rest periods.

Side BA Accuracy T K MNI
X Y Z
mOFC* LR 11 59 451 138 -8 48 —16
ACC/subgenual ™ LR 11/25 63 432 161 8 34 -6
Precentral gyrus R 6 59 416 66 22 —16 70
Postcentral gyrus* L 4 63 447 239 —24 —28 60
Inferior parietal lobule®™ R 40 59 477 183 26 —38 46
Superior temporal gyrus R 22 59 472 102 66 —12 12
Angular gyrus R 39 60 454 69 44 —76 28
Occipital cortex” R 17 61 483 294 14 —90 8
Occipital cortex L 19 60 543 99 -—-32 —-70 36

Results are reported at statistical threshold of p < 0.05, corrected for multiple comparisons
at cluster level using FDR; only peak activations of clusters are reported; mOFC = medial
orbitofrontal cortex; ACC = anterior cingulate cortex; L = left hemisphere, R = right
hemisphere, BA = Brodmann area, K = cluster size, MNI = Montreal Neurological
Institute.

* Indicates clusters that are significant after FWE correction at p < 0.05.

Session B classification), local activation patterns in the mOFC and the
ACC were found to predict the valence of spontaneously generated
thought during task-free rest periods (p < 0.05, corrected for multiple
comparisons). See Table 2 for details. Supplemental permutation analy-
ses confirmed that response patterns in all predictive clusters yielded
classification accuracies that are highly unlikely to be obtained by
chance only (Supplemental Table 1). Importantly, there was significant
spatial overlap between the predictive clusters based on the task-
related ROI (within Session A) and task-free thoughts (within Session
B) as illustrated in Fig. 3. Despite this spatial convergence of the predic-
tive mOFC cluster for task-based and task-free mental states, a conven-
tional univariate analysis testing for differences in activation between
rest periods in Session B that involved positive and negative thoughts
(GLM2) failed to find significant results (p < 0.05, corrected). Similarly,
mass-univariate average BOLD responses (percentage signal change)
for the mOFC-ROI did not differ for positive versus negative rest periods
(all p> 0.68). These findings indicate that the sensitivity of MVPA
makes it a powerful tool to investigate subject driven mental states
such as mind-wandering or daydreaming.

Resting-state fMRI

To further specify the functional role of the mOFC in internally
driven affective processing, we explored whether individual differ-
ences in the degree of functional network integration of the mOFC
during undisturbed rest (i.e., neither by tasks nor thought probes)
relate to participants' average valence of unguided thoughts in Ses-
sion B. This analysis is important because the technique of thought
sampling could potentially disrupt the ‘normal’ flow of self-generated
experiences at rest. Thus, the independent resting-state fMRI session
allowed examining variations in how affectively toned self-generated
thought are associated with neural processes in uninterrupted rest.
We acquired resting-state fMRI data from a subset of 20 participants
in an independent Session C that was undisturbed by thought probe
sampling. Using a ROI-based analysis (see Fig. 2D for illustration of
ROI in mOFC), we found a positive correlation between the average
degree centrality of the mOFC and participants' average experienced
valence in Session B (p < 0.025, t = 2.51; with a corresponding correla-
tion coefficient of r = 0.51; Fig. 2F). In other words, the mOFC exhibited
greater hub like properties during a period of undisturbed rest in partic-
ipants who tended to engage in more positively valenced thought and
feeling states.

A supplemental voxel-wise correlation for the whole brain con-
firmed that the degree of functional network integration of the right
mOFC (peak at [MNI 12, 48, —12], t = 3.65, k = 23 voxels) and the
bilateral PCC (peak at [MNI —6, —39, 9], t = 4.01, k = 68 voxels) in
Session C was positively correlated with the affective content of un-
guided subject driven mental states during task-free rest in Session B
(p<0.005, k = 20 voxels, whole-brain uncorrected; please note that
uncorrected results are reported to emphasize the convergent evi-
dence and the relative specificity of the mOFC findings). No other
clusters were identified. These findings confirm a central role of the
mOFC in the neural network underlying subject driven affective pro-
cessing during rest, at the level of individual differences.

Discussion

The present study tested whether we can decode the affective con-
tent of unguided, subject driven thoughts during task-free rest based
on response patterns of conceptually related experiences obtained in
an emotional attribution task. Using advanced multivariate pattern
analysis (MVPA) (Haxby et al., 2001; Haynes et al., 2007; Kriegeskorte
et al., 2006; Norman et al., 2006), we demonstrated that the valence of
unconstrained affective thoughts can be reliably predicted based
on neural activation patterns in the mOFC identified when people
are externally cued to engage in similar affective mental states. We
found similar co-variance at the subjective level: participants’
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Fig. 3. Neural prediction of the valence of unconstrained thoughts during task-free rest periods in Session B. Using a whole-brain searchlight decoding approach, activation patterns in the
mOFC predicted the valence of self-generated mental states during rest periods in Session B (59% average decoding accuracy; p < 0.05, corrected). The figure displays the overlap (illus-
trated in yellow) of the predictive searchlight cluster (illustrated in green) and the mOFC-ROI based on task-related attributions in Session A (illustrated in red).

mean experienced valence of task-cued and spontaneously generated
thought was positively correlated over a one-week interval.! Moreover,
using resting-state data from an independent Session C, functional con-
nectivity measures (i.e., degree centrality) demonstrated that an
individual's tendency to self generate positive thoughts was associated
with the hub like properties of the mOFC during task-free rest. Relating
individual differences in affective tone with patterns of intrinsic func-
tional connectivity, this result provided further support for the func-
tional the role of mOFC in the affective processing of internally driven
thought and feeling states. Given that the rest periods in Session C
were undisturbed by thought probes, this finding indicates that the as-
sociation of the mOFC with the affective tone of unconstrained mental
processes is not an artifact of the method of thought sampling and
due to processes such as response preparation for the impending
thought probe, metacognition or response biases in self-reports. Alto-
gether these results can be parsimoniously accounted for by the
hypothesis that there are important neural processes, encoded by the
mOFC, that are common to task-cued and spontaneous, unguided affec-
tive states. This evidence for shared neural codes across both experi-
ences forms the basis for future MVPA investigations into purely
subject driven brain states based on neural similarities with task-
based experiences.

Our results indicate that the functional role of the mOFC is not limit-
ed to the processing of affective valence of a wide range of stimuli that
occur as part of a task, or reflect the regulation of externally cued emo-
tional responses (Bechara et al., 2000; Berridge and Kringelbach, 2013;
Davidson et al., 2000; Etkin and Wager, 2007; Etkin et al., 2011;
Grabenhorst and Rolls, 2011; Izquierdo et al., 2005; Kringelbach, 2013;
Rolls et al., 1994; Roy et al., 2012). Instead, we demonstrate that this
region also reflects the affective content of thoughts that occur in the
absence of an external referent. An extension of the central role of
the mOFC to the processing of unguided, internally driven affective
thoughts is consistent with the proposal that this region plays a domain
general role in generating affective meaning (Roy et al., 2012). The
counterbalanced order of the first two scanning sessions (Sessions A
and B) rules out the possibility that the experiential and neural associa-
tions identified by MVPA merely reflect the recollection of the previous-
ly performed external attribution task. Likewise, trivial accounts for
shared representations such as priming of the affective content of

! The rationale for expecting an association between the valence ratings in Session A
and Session B is the same rationale as for our neural prediction. Just as we hypothesized
that neural response patterns from task driven and subject driven examples of the same
state are predictive, we also assumed that inducing cognitive states within an individual
sheds light on the way that the experience unfolds in unconstrained settings.

thoughts during rest by preceding attributions are unlikely due to the
one-week delay between scanning sessions. Furthermore, because
supplemental decoding analyses demonstrated that the shared neural
representations of the mOFC were specific to the valence of participants'
self-generated thoughts, we are confident that this region is primarily
involved in the affective dimension of experiences like daydreaming
or mind-wandering. More precisely, activation patterns in the mOFC ob-
tained in an affective attribution task contained reliable information
about the affective content of spontaneously self-generated thoughts,
but not whether these thoughts were more related to self or others
and future or past. Although episodes of self-generated thought are
commonly regarded as a form of mental time travel (Stawarczyk et al.,
2011), they are also an emotional experience. Our data suggests that
the mOFC likely plays a crucial role in this affective element of uncon-
strained thought.

In practical terms, our observation that affective experiences are me-
diated by the mOFC provides important clues into the specific mecha-
nism through which cognition can influence happiness and ultimately
psychological well-being in daily life. Given that internally driven, self-
generated thoughts are more frequent in individuals with depression
(Smallwood and O'Connor, 2011; Smallwood et al., 2007; Watts et al.,
1988), chronic unhappiness could be reflected by changes in the
manner through which the mOFC contributes to the emotional charac-
teristics of conscious thought. More generally, because engaging in neg-
ative subject driven thoughts is linked to premature aging and stress
(Epel et al.,, 2012), our results have implications for how thought can di-
rectly impact on health and well-being. We suspect that understanding
the role of mOFC in internally driven thought and feeling states could
ultimately shed an important light on the disruptive influence of such
experiences on the health of many members of todays' society.

There are a number of limitations that should be borne in mind
when considering the current results. One issue concerns the time
window we used to explore the functional data from Session B. We
employed a 30 second window as this was the longest time frame
common to all thought sampling probes. Although a shorter window
(Christoff et al., 2009; Hasenkamp et al., 2012) would provide a more
targeted result, it would also provide less power in our analysis, and
would also be chosen in an arbitrary fashion. The issue of the appropri-
ate window size is a methodological challenge in the study of self-
generated thought. The spontaneous occurrence of the episode means
that we cannot reliably identify the onset - or the duration - for the ex-
perience (Smallwood, 2013a), at least not using thought probes obtain-
ed with considerable time lags. This lack of a clear indicator of their
onsets means that self-generated thoughts cannot be explored with
the precision with which we can understand other aspects of cognition
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and affective experience. Yet it is important to recognize that the capac-
ity to classify subject driven mental states using MVPA provides an
important methodological advance that in the future may determine
when these experiences begin. Thus, although the window size used
in the current work is a limitation, our demonstration that MVPA can
be used to classify self-generated affective thoughts will likely provide
an independent approach that can help optimize the selection of win-
dow size in future studies investigating these states. It is also important
to recognize the value of the self-reported information in understanding
subject driven mental states. Although we were able to employ MVPA to
predict the affective content of thought, these forms of supervised clas-
sification are valid in as much as the labels employed are themselves
valid. At present, first-person experience can only be assessed using in-
trospection and thus it would be inappropriate to conclude that our
technique is equivalent to so-called mind reading. Instead our study
demonstrates that MVPA could be subsequently employed to test, and
understand, the complex varieties of self-generated thoughts that are
experienced in daily life. In addition to the increased precision that
MVPA provides (such as its potential capacity to determine the onset
more accurately) it could also be used to test theories of self-
generated thought. In the current study, we focused on examining the
specific aspects of neural activity that are specific to affective thought.
However, future work could also examine neural processes that may
be common to different forms of experience. In our current study, for
example, we used a single Likert scale reflecting a single dimension
from self to other. Following up on behavioral evidence of a statistical
decomposition of these two components (Ruby et al., 2013a,b), future
studies might use separate scales to access shared and unique elements
of self-related and other-related thoughts. Conceivably, MVPA could be
easily used to provide a neural basis for identifying the ontology of self-
generated thought much as it has been proposed for other aspects
of cognition such as cognitive control (Lenartowicz et al., 2010) or for
psychiatric disorders (Bilder et al., 2009).

Our results make two general points regarding how to understand
states of unconstrained self-generated thought such as daydreaming
or mind-wandering. First, at least in the affective domain, greater care
is needed when attempting to probe the differences between uncon-
strained subject driven experiences and mental states that are initiated
in response to an external task. Traditionally, self-generated states of
mind-wandering or daydreaming have been viewed as unique because
of the supposition that they recruit unique neural substrates (Fox et al.,
2005). However, our results suggest that this view is overly simplistic.
At a process-level, both forms of experience can be understood by neu-
ral changes that occur in the mOFC, demonstrating that at least certain
elements of both experiences rely on a common neural code. These
two classes of experience are nonetheless fundamentally different: the
occurrence of subject driven affective thought must be influenced
directly by intrinsic changes in the brain, while similar mental states
that arise as part of a task occur in response to an external perceptual
cue (Smallwood, 2013a,b). Second, our data suggest that one reason
why task-based and resting-state networks exhibit spatial overlap
(Smith et al., 2009) is because at rest, participants could be actively en-
gaged in cognitive and emotional processes that recruit the same neural
process used by task-based paradigms. Although we focused on emo-
tional processes in the current study, many brain networks exhibit
similarities between task and rest (Smith et al., 2009). Based on our
data, future research should aim to identify which networks exhibit
coactivity between rest and task-related processing because of the
cognitive operations that participants engage in during rest and those
which do not.

Finally, our results demonstrate the efficiency of approaches like
MVPA in decoding subject driven mental events in task-free resting-
state sessions. While multi-voxel activation patterns in the mOFC
encoded the affective content of unconstrained thoughts, conventional
univariate contrasts failed to reveal differential neural effects during
rest, perhaps because of the increased sensitivity of MVPA relative to

mass-univariate approaches (Kragel et al., 2012; Kriegeskorte et al.,
2007). MVPA has previously been applied successfully to investigate
shared neural representations across experimental conditions for a vari-
ety of affective and cognitive tasks (Corradi-Dell'Acqua et al., 2011;
Kahnt et al., 2011; Kassam et al., 2013; Lewis-Peacock and Postle,
2008; Poldrack et al., 2009). For example, activation patterns in the me-
dial prefrontal cortex and left superior temporal sulcus were found to
encode basic affective states such as happiness, anger or fear across dif-
ferent sensory stimulus modalities (Peelen et al,, 2010). These emotion-
specific representations in the brain were found when participants were
asked to make judgments about the emotional intensity conveyed
by the stimuli (i.e., pictures of faces, body movements or voices). The
present study extends previous findings by showing that neural activa-
tion patterns that encode the affective content of externally cued, task-
related mental states are reinstated when these experiences are sponta-
neously self-generated in the absence of an environmental cue. Thus,
MVPA allowed us to exploit the spatial similarity between task-related
and unconstrained neural activity and to reliably predict the affective
content of unguided subject driven mental states. As understanding in-
trinsic activity in the brain is a key aim of cognitive neuroscience (Zhang
and Raichle, 2010), our data suggests that task-based decoding together
with subjective self-reports are an important tool in studying uncon-
strained self-generated cognitive and affective information processing
with greater rigor than before.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.03.076.
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